Patterns of Alcohol Detection Across Measures Within a Contingency Management Procedure

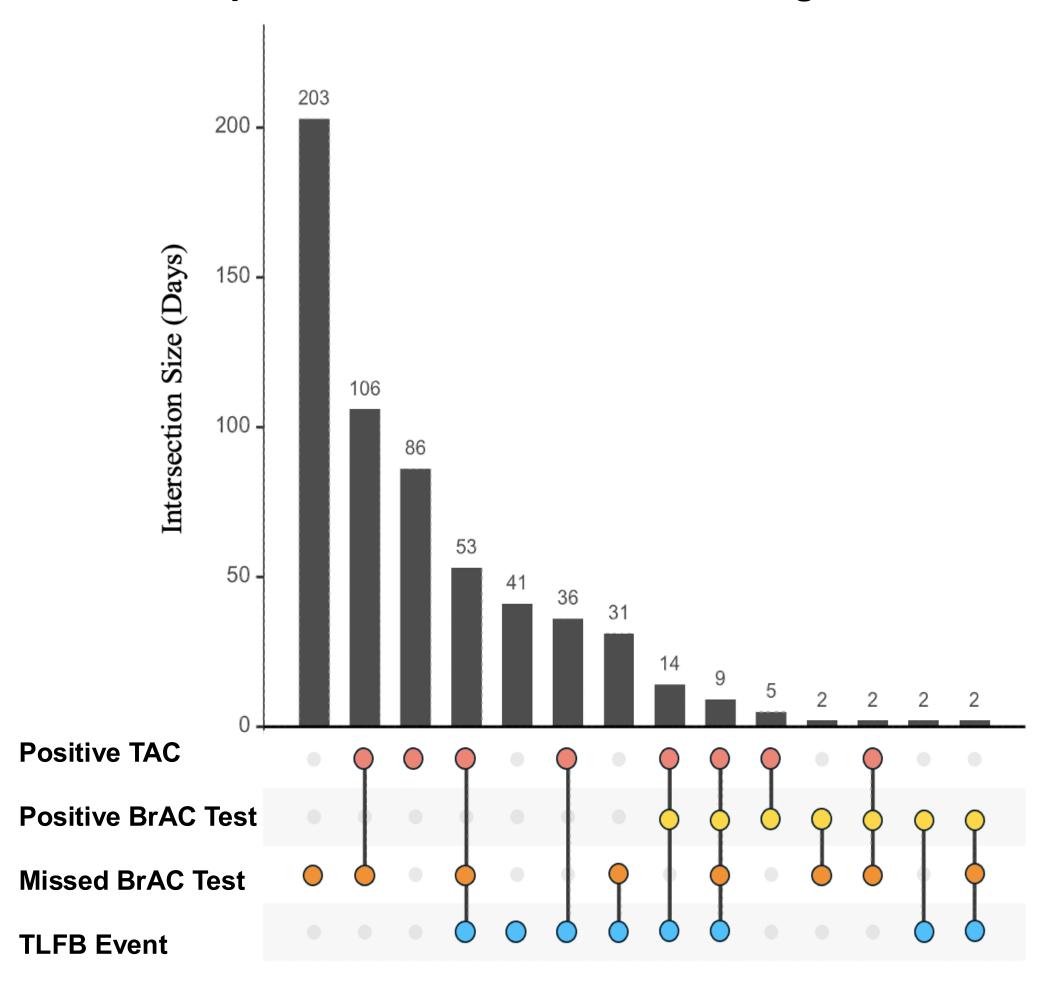
Haczkiewicz, C.¹, Mack, A.¹, Heimlich, D.¹, Hill-Kapturczak, N.², McDonough, K.¹, Vingren, J. L.³, Blumenthal, H.¹, Ahmad, A.¹, Loredo, D.¹ & Dougherty, D.¹*

University of North Texas, Department of Psychology, Denton, Texas, USA 76203
 University of Texas Health Science Center, Department of Psychiatry, San Antonio, Texas, USA 78229
 University of North Texas, Department of Kinesiology Health Promotion and Recreation, Denton, Texas USA 76203

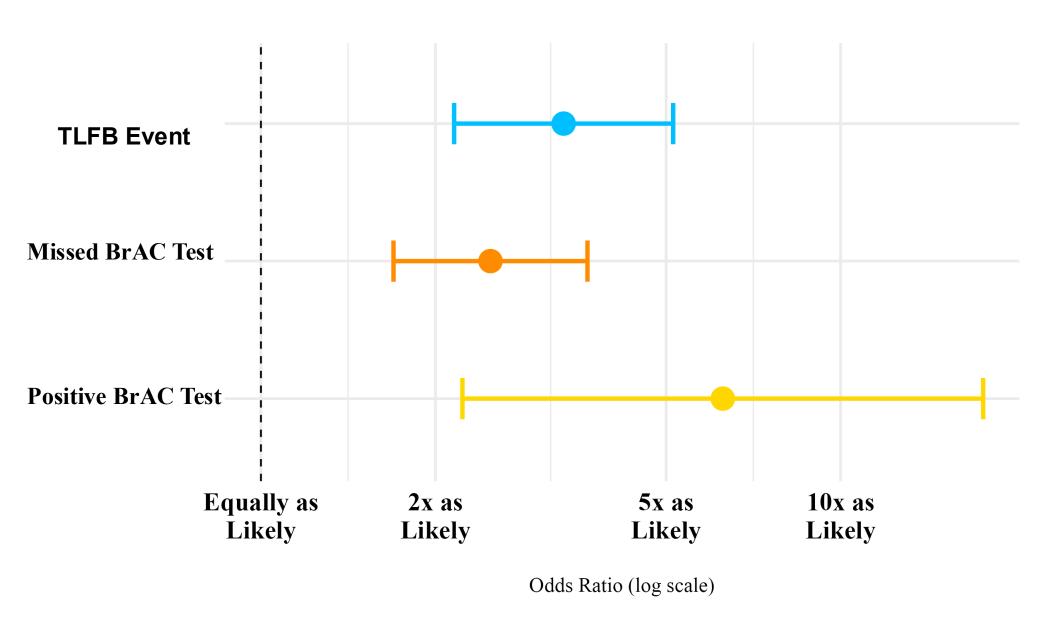
INTRODUCTION

- While Transdermal Alcohol
 Monitors that provide continuous
 Transdermal Alcohol
 Concentration (TAC) measurements
 may not be suitable in real world
 settings due to stigma (Villalba et al.,
 2020), they are still a reliable tool for
 detecting alcohol
 consumption (Marques, P. R., &
 McKnight, A. S. 2007, 2009; Van
 Egmond et al., 2021).
- Remote breath alcohol monitoring that measure Breath Alcohol Concentration (BrAC) are equipped with facial recognition software and remote capabilities that make them useful in clinical settings (Koffarnus et al., 2021). However, drinking may go undetected that occurs outside of breath sample testing windows.
- Another alcohol monitoring method, Timeline Followback (TLFB), utilizes retrospective selfreport measures (TLFB; Sobell & Sobell, 1992). These methods are susceptible to recall bias especially in settings where drinking is influenced by monetary incentives (Kaplan & Koffarnus, 2019).

PURPOSE

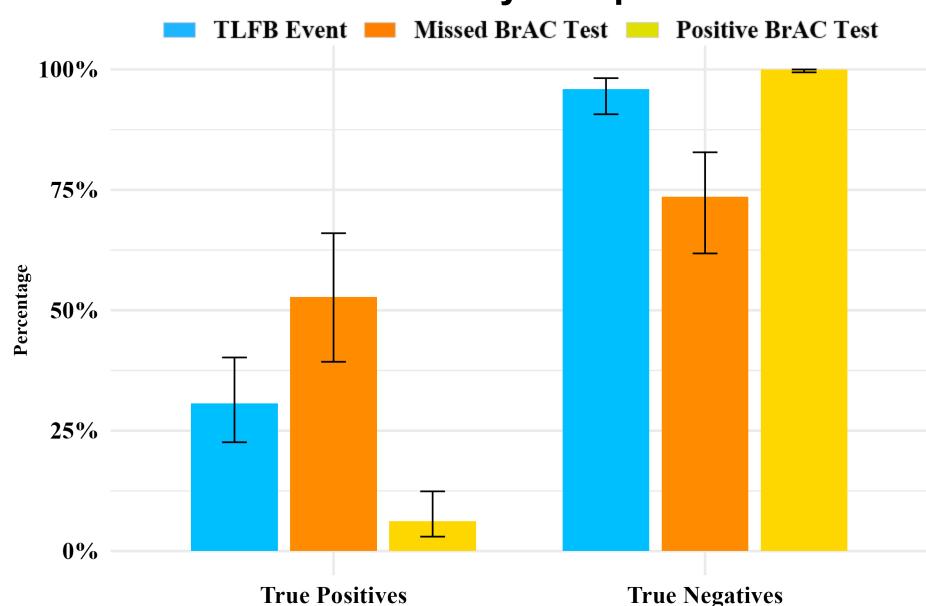

To assess which measure (TLFB, Positive & Missed BrAC test) most reliably detects alcohol consumption when TAC confirms a drinking event.

METHODS


- Across 4 weeks, 39 participants were instructed to submit four identity verified compliant BrAC (≤.02 g/dL) samples within a chosen testing window (e.g., 7am, 12pm, 5pm, 11pm) via Soberlink Connect Breathalyzer devices and were given text reminders before submissions.
 Participants were compensated
- \$10 per day for compliant BrAC submissions.
- Soberlink devices were set up through participants smartphones and submitted samples via the Soberlink App.
- Participants were administered a Secure Continuous Remote Alcohol Monitor (SCRAM CAM) that detected alcohol use 24 hr./day, 7 days/week via TAC measurements ~30 minutes
- The TLFB interview was completed in person after study completion.

RESULTS

Overlap in Detection Across Monitoring Methods



Odds of Alcohol Detection on TAC-Positive Days

Each alcohol detection method was more likely to detect alcohol consumption on days when TAC detected alcohol consumption vs days TAC did not detect alcohol.

Detection Accuracy Compared to TAC

 Missed BrAC test submissions most reliably detected alcohol consumption (True Positives) while Positive BrAC test submissions most reliably confirmed abstinence from alcohol (True Negatives).

KEY FINDINGS

- Missed BrAC tests occurred the most days (203) with no other detection method present.
- Both Positive TAC and Missed BrAC test occurring together had the 2nd most detections of days with (106) more than Positive BrAC and TLFB.
- Positive TAC occurred by itself on 86 days across all participants
- All four methods of alcohol detection only overlapped for 9 days.
- There were 0 instances in which a Positive BrAC test occurred by itself.

CONCLUSION

- Missed BrAC test submissions aligned with TAC confirmed drinking events more than any other detection method
- The TLFB reliably confirmed abstinence from alcohol and was more likely to detect alcohol on days TAC confirmed drinking.
- Positive BrAC submissions were more likely to occur on TAC confirmed drinking days than Missed BrAC submissions.
- Missed BrAC submissions accounted for a larger portion of when drinking occurred.
- Since missed scheduled BrAC test submissions can lead to drinking, in real world settings drinking is assumed to have occurred.
- Continuous alcohol monitoring methods (i.e., TAC) may be needed in order to accurately capture when people consume alcohol as opposed to purely relying on self-report and scheduled BrAC test submissions.

REFERENCES

Kaplan, B. A., & Koffarnus, M. N. (2019). Timeline Followback self-reports underestimate alcohol use prior to successful contingency management treatment. Alcohol and Alcoholism, 54(3), 258–263. https://doi.org/10.1093/alcalc/agz031

Koffarnus, M. N., Kablinger, A. S., Kaplan, B. A., & Crill, E. M. (2021). Remotely administered incentive-based treatment for alcohol use disorder with participant-funded incentives is effective but less accessible to low-income participants. Experimental and Clinical Psychopharmacology. https://doi.org/10.1037/pha0000503

Marques, P. R., & McKnight, A. S. (2007). Evaluating transdermal alcohol measuring devices (Report No. DOT HS 810 875). National Highway Traffic Safety Administration. https://one.nhtsa.gov/DOT/NHTSA/Traffic%20Injury%20Control/Articles/Associated%20Files/810875.pdf

Marques, P. R., & McKnight, A. S. (2009). Field and laboratory alcohol detection with 2 types of transdermal devices. Alcoholism: Clinical and Experimental Research, 33(4), 703–711. https://doi.org/10.1111/j.1530-0277.2008.00887.x

Sobell, L. C., & Sobell, M. B. (1992). Timeline follow-back: A technique for assessing self-reported alcohol consumption. In R. Z. Litten & J. P. Allen (Eds.), Measuring alcohol consumption: Psychosocial and biochemical methods (pp. 41–72). Humana Press/Springer Nature. https://doi.org/10.1007/978-1-4612-0357-5_3

Van Egmond, K., Wright, C. J. C., Livingston, M., & Kuntsche, E. (2021). A parallel test of the SCRAM-CAM transdermal monitors ensuring reliability. Drug and Alcohol Review, 40(7), 1122–1130. https://doi.org/10.1111/dar.13353

Villalba, K., Cook, C., Dévieux, J. G., Ibanez, G. E., Oghogho, E., Neira, C., & Cook, R. L. (2020). Facilitators and barriers to a contingency management alcohol intervention involving a transdermal alcohol sensor. Heliyon, 6(3). https://doi.org/10.1016/j.heliyon.2020.e03612

This research was supported by the National Institutes of Health (NIH) under Grant/Award Number R21-AA029641